Structure-activity relationships of the melanocortin tetrapeptide Ac-His-DPhe-Arg-Trp-NH(2) at the mouse melanocortin receptors: part 2 modifications at the Phe position

J Med Chem. 2002 Jul 4;45(14):3073-81. doi: 10.1021/jm010524p.

Abstract

The melanocortin pathway is an important participant in skin pigmentation, steroidogenesis, obesity, energy homeostasis and exocrine gland function. The centrally located melanocortin-3 and melanocortin-4 receptors (MC3R, MC4R) are involved in the metabolic and food intake aspects of energy homeostasis and are stimulated by melanocortin agonists such as alpha-melanocyte stimulation hormone (alpha-MSH). The melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," and it has been well-documented that inversion of chirality of the Phe to DPhe results in a dramatic increase in melanocortin receptor potency. Herein, we report a tetrapeptide library, based upon the template Ac-His-DPhe-Arg-Trp-NH(2), consisting of 26 members that have been modified at the DPhe(7) position (alpha-MSH numbering) and pharmacologically characterized for agonist and antagonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. The most notable results of this study include the identification of the tetrapeptide Ac-His-(pI)DPhe-Arg-Trp-NH(2) that is a full nanomolar agonist at the mMC1 and mMC5 receptors, a mMC3R partial agonist with potent antagonist activity (pA(2) = 7.25, K(i) = 56 nM) and, but unexpectedly, is a potent agonist at the mMC4R (EC(50) = 25 nM). This ligand possesses novel melanocortin receptor pharmacology, as compared to previously reported peptides, and is potentially useful for in vivo studies to differentiate MC3R vs MC4R physiological roles in animal models, such as primates, where "knockout" animals are not viable options. The DNal(2') substitution for DPhe resulted in a mMC3R partial agonist with antagonist activity (pA(2) = 6.5, K(i) = 295 nM) and a mMC4R (pA(2) = 7.8, K(i) = 17 nM) antagonist possessing 60- and 425-fold decreased potency, respectively, as compared with SHU9119 at these receptors. Examination of this DNal(2')-containing tetrapeptide at the F254S and F259S mutant mMC4Rs resulted in agonist activity of this mMC4R tetrapeptide antagonist, similar to that observed for the SHU9119 peptide, supporting our previously proposed hypothesis that the Phe 254 and 259 transmembrane six receptor residues are important for differentiating melanocortin sequence-based MC4R antagonists vs the agouti-related protein (AGRP) sequence-based antagonists.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Cell Line
  • Humans
  • Mice
  • Oligopeptides / chemical synthesis*
  • Oligopeptides / chemistry
  • Oligopeptides / pharmacology
  • Phenylalanine / chemistry*
  • Receptor, Melanocortin, Type 3
  • Receptor, Melanocortin, Type 4
  • Receptors, Corticotropin / agonists
  • Receptors, Corticotropin / antagonists & inhibitors
  • Receptors, Corticotropin / drug effects*
  • Receptors, Melanocortin
  • Receptors, Peptide / agonists
  • Receptors, Peptide / antagonists & inhibitors
  • Receptors, Peptide / drug effects*
  • Structure-Activity Relationship

Substances

  • Mc3r protein, mouse
  • Oligopeptides
  • Receptor, Melanocortin, Type 3
  • Receptor, Melanocortin, Type 4
  • Receptors, Corticotropin
  • Receptors, Melanocortin
  • Receptors, Peptide
  • acetyl-histidyl-phenylalanyl-arginyl-tryptophanamide
  • melanocortin 5 receptor
  • Phenylalanine